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The ĉ  = $ minimal N = 1 superconformal system and its 
realisation in the critical O(2) Gaussian model? 
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Charles C Lauritsen Laboratory of High Energy Physics, California Institute of Technology, 
Pasadena, CA 91125, USA 

Received 16 June 1987, in final form 2 September 1987 

Abstract. The structure of the c^ = 3 minimal N = 1 superconformal system is analysed in 
detail. The primary operators are constructed as operators in the critical O(2)  Gaussian 
model at some specific fixed radius. The operator algebra is verified explicitly. Operator 
product coefficients and some superspace correlation functions are calculated exactly. 

1. Introduction 

There has been much progress recently concerning two-dimensional critical phenomena 
and  the whole structure of conformal invariance in two dimensions [ 11. Supersymmetry 
also seems to play some role in certain critical models [2-41. Techniques have been 
advanced to deal with the calculation of correlation functions and the representation 
content of critical models. 

The purpose of this paper is to analyse extensively a particular superconformal 
minimal theory and  to show that it is fully realised in a certain critical system, namely 
the O(2) Gaussian model at a point on the critical Kosterlitz-Thouless line. 

As shown by Friedan et a1 [ 5 ] ,  when the central charge of the N = 1 superconformal 
algebra is less than one, there exists a discrete infinity of unitary superconformal 
theories. They contain a finite set of operators, which closes into itself under the 
operator product expansion (OPE) .  The first non-trivial model in this series has been 
identified with the tricritical Ising model [2]. 

The unitary superconformal models with c ^ <  1 are given by [ 5 ] :  

8 
m(m + 2 )  

c ^ = l -  m = 2, 3 , 4 , .  , 

There are two sectors, the NS sector where the fermionic components of superfields 
are single valued on the complex plane and  the R sector where the fermionic components 
are double valued around the spin fields, which generate the R ground states from the 
NS vacuum [ 2 ] .  The finite set of primary operators contained in these theories has 
dimensions given by 

[( m + 2 ) p  - mq]’ - 4 
8 m ( m + 2 )  

1 c p  < m, 1 s q < m + 2 ,  ( p  - q )  even AP.4 = 
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in the NS sector and 

[ ( m  + 2 ) p  - mq]’-4 1 +- 
A,, = 8 m ( m + 2 )  16 

1 s p  < m, 1 s q < m + 2 ,  ( p -  q )  odd (1 .26)  

in the R sector. 
The system that we will deal with has a central charge given by the m = 4 term in 

the series [ 5 ] .  It has a Virasoro anomaly c = tc  ̂= 1 which coincides with a c of the 
critical Gaussian model. The dimensions of its primary operators are shown in table 
1 .  In fact, the set of the primary operators in the c  ̂ = 3 theory, including the twisted 
sector, coincides with the content of the first minimal model of the N = 2 superconfor- 
mal algebra. This was proven rigorously in [6] using the characters of the N = 2  
superconformal algebra. 

Table 1. Dimensions of the primary operators of our model, in N S  and R sectors. 

NS R 

I 

I 
1 16 
1 9 
6 16 

I 3 
I6 8 

- 0 24 
- 
- 

- 

In [3] it was shown that the N = 2 superconformal algebra is realised in the critical 
O(2) Gaussian model at a fixed radius. 

Below we show that in fact the full c  ̂ =: superconformal model is realised in the 
critical Gaussian model. We will be discussing the N = 1 formalism since it is easier 
to deal with. Later on we will discuss how we can assemble the N = 2 structure from 
the N = 1 one. The O ( 2 )  Gaussian model is described at the critical line by a single 
free-scalar field. The remaining piece that needs to be added is the ‘twist’ field of the 
scalar field. This is known to describe the twisted sector of the first N = 2 superconfor- 
mal minimal model [6]. The strategy is to construct explicitly all the primary operators 
in the c  ̂= f model from vertex operators and the twist family, and then show that they 
obey the correct operator algebra implied by the structure of the N = 1 superconformal 
algebra [8]. Some correlation functions will be also calculated and shown to be 
supermeromorphic functions in N = 1 superspace. 

The structure of this paper is as follows. In  § 2 we explicitly construct the ‘untwisted’ 
primary operators of the NS and R sectors and we verify the respective operator algebra. 
In 5 3 the ‘twisted’ set of operators are constructed and the relevant fusion rules verified. 
Some correlation functions are also calculated as functions in N = 1 superspace. We 
also discuss the possible modular invariant models by ‘sewing’ together left and right 
sectors. Finally 0 4 contains remarks concerning the realisation of the c  ̂= 3, N = 1 
superconformal system in the critical X Y  and AT models as well as our conclusions. 

2. Construction of the untwisted operators 

At the critical point the O(2) Gaussian model is described by a two-dimensional vector. 
We will consider the radius of this vector to be fixed to R =&. The only remaining 
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degree of freedom is the phase which is a free-scalar field 4 ( a )  and for fixed time 7 

it provides a map 4 ( a ) :  SI-. S ' .  This map is periodic in r ~ ,  i.e. 4 ( a + 2 ~ )  = 4(v), and 
the target space is a circle due to the fact that 4 ( a )  is a phase. The operators in this 
theory are the 'vertex' operators, V,(a)  =: exp( iqb (a ) ) :  and their derivatives. In order 
for these operators to be well defined in the target space, a must take the values: 
a = n / R ,  n E 2 or Z@f,  where R is the radiust. Integer values for n correspond to 
bosonic operators, while half-integer ones correspond to fermionic operators. We will 
work from now on with holomorphic coordinates z and Z. At the critical point the z 
and 2 dependence factorises. We will discuss the left sector of the theory which 
depends on z only. The discussion of the right sectors parallels that of the left one. 

The two-point function of 4 ( z )  is given by: 

( O l 4 ( z ) 4 ( w ) l O ) =  -In(z-  w) (2.1) 

where radial quantisation is assumed and the vacuum is the SL(2, C)  invariant vacuum. 
The energy-momentum tensor is of the standard form, T ( z )  = - f :  a ,4 ( z )dzd ( z ) :  

with an  OPE$ 

2 T ( w )  a,.T(w) 
2 ( z - w ) 4  ( z - w ) 2  ( z - w ) *  

+-+- 1 
T ( z ) T ( w ) =  

A vertex operator V,(z )  has dimension A = a'/2 as shown by the following OPE: 

a' v,(w) a ~ ( w )  
T ( z ) V , ( w )  =- -+$-. 

2 ( z - w ) '  ( z - w )  

To find the superpartner of T ( z ) ,  we have to find an  operator with A = $. There 
are two candidates, V J ( Z )  and V - , ~ ( Z ) ,  as well as any linear combination of the two, 
which has the correct dimension. For reasons that will be explained below, the correct 
form is 

G ( z )  = (i/&)[: exp( i&d(z) )  :-: exp(-i&qh(z)) :]. (2.4) 

Then the N = 1 superconformal algebra closes correctly 

2 1 2 T ( w )  
3 (z -w)3  ( z - W ) '  

G ( z ) G (  w )  =- -+- 

The primary operators in the NS sector are generated by primary superfields acting 
on the NS vacuum. A superfield is a function in superspace§: @(z) = g ( z ) +  O$(z) .  If 
A is the dimension of the bosonic components g (  z ) ,  then the corresponding dimension 
for the fermionic partner $( z )  is A + 4.  A primary superfield operator is defined through 
the following OPE with the super-energy-momentum tensor 

f In  our case, R = -3. 
$ W e  will always suppress non-singular contributions to the OPE. 

§ z and 0 are the coordinates in superspace denoted collectively with 
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The obvious candidate for the h = 1 primary operator is the U (  1) current of the 

1. (2.7) 

From (2.6) we can infer that the superpartner of gl(z)  is $ ] ( z ) =  
-i[ V > ~ ( Z )  + V-,?(z)]. It is an easy exercise to check that the rest of the relations (2.6) 
are satisfied. 

G ( z )  and +l (z )  are the two supercharges of the corresponding N = 2 minimal 
theory which, along with T (  z) and g l (  z ) ,  complete the N = 2 super-energy-momentum 
tensor multiplet [3,4]. As far as the other presentations are concerned they can be 
built from the N = 1 representations without adding new fields in the supermultiplet. 
As was shown in [4], for N = 2 representations degenerate at level one of the fermionic 
components vanishes identically while the second bosonic component is the derivative 
of the first one. Thus the N = 2 supermultiplets contain the same number of degrees 
of freedom as the N = 1 supermultiplets. Using the remarks above the N = 2 structure 
can be easily reconstructed from the N = 1 structure. 

There are two A = ;  operators with opposite U ( l )  charge: g;,,6(z)= 
exp[ *(i/&)$( z)]. Using the following relation: 

(2.8) 

we can calculate the superpartners of gT/6(z): & =  T i l a  : exp[T(2i /a)$(z)] .  As 
can be seen from figure 1, apart from the A = operator, the above exhaust the set of 
primary operators in the NS sector. Correlation functions of vertex operators can be 
calculated through the standard formula 

system, g l (z )=id24(z) .  It has an OPE with G(z) :  

: e x p ( i A 4 ( w ) )  :+: exp(-iv'34(w)) : ( ( 2  - W?) 
G(z)g l (w)  = -i 

: exp(i&(z))::exp(ib4(w)):= ( z -  wIQh : exp(ia4(z)+ibc$(w)) : 

(2.9) 

The sum of the coefficients a, in (2.9) has to be zero, otherwise I R  divergences force 
the correlation function to vanish [7]. To calculate the operator algebra ofthe operators 
above, one has to calculate the appropriate three-point functions. The idea is that if 

# 0. The only non-trivial three-point functions that 
are non-zero are given below: 

- [@J, then 

(gl(Zl)gl(Z2)T(Zd) = (z13z23)2 (g:/6(z1)g1/6(z2)T(z3)) =iz:/?3(z13z:3)-2 (2.100) 

1 
(g  :d 21 g 1/6( z2) g ( z3 1) = 3 zZ3( z I 3 2 2 3  

(2.10b) 

Relations (2.10) imply the following operator algebra: 

[11@[11 = L O 1  [11@[tl= [;I (2.11a) 

1 
[ dl 0 [ d] = [ 01 + a ,  [ 1 ] + .2[ ; + ;] a1 =z a,=-- (2.1 1 b) 

1 
- A  

which is in accord with the known 'fusion rules' [8]. 
In the Ramond sector the two ground states are generated from the NS vacuum by 

the corresponding spin-field operators, @(z) and Q(z) of dimension A = h, Go)@) = 10). 
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One of them, IG) is degenerate at level zero and thus decouples. Correspondingly, 
G( z)@( w) - O[ (z  - w ) "  '1. @( z )  can be also represented as a vertex operator: 

We can explicitly compute 

1 
( z  - w)l'?. 

1 
G(z)O'(w)=T-:  exp J7 (2.12) 

As expected, O * ( z )  create cuts in the complex plane around which the fermionic 
components of the superfields are double valued. The Ramond primary operators are 
generated from the Ramond ground state by the action of superfield operators. 

The operator of dimension A = ;  in the R sector can be represented by g;,,(z)=: 
exp(*ii&4(z)) :. I t  is generated by the superfield operator (Pl ,b(z)  acting on the R 

vacuum. We can explicitly verify the following OPE: 

[o+tlo[+il+ = [+4+ 11, 

[d+tl+o[+il+ = [;I- 

[O+i]O[i]- = [$I+ 

[t+i]+O[&]- = [h+ l ]+ .  

[il+O[$l+ = [;I+ [i l+O[$l- = [$I- (2.13) 

By replacing + C-) -, (2.13) remains valid. 

sectors of the corresponding N = 2 model. 
The operators constructed so far correspond to all the operators of the NS and R 

3. Construction of the twisted operators 

In this section we introduce the notion of a 'twist' field and use it to construct the 
remaining operators in the model. 

In [6] it was shown that the single operator of the twisted sector of the c'= $, N = 2 
model with A = & decomposes into the A = & operator in the NS sector of the N = 1 
system. Since the operator in the T sector twists one of the two bosonic components 
of the N = 2 superfields, it is natural to expect that a candidate for the A = operator 
is the 'twist' field H'(z), which twists the scalar field 4 ( z ) + .  

A twisted scalar field can be defined as a map: S' + Si which is antiperiodic in CT: 

4(a+2r )  = -4(a) .  (3.1) 

There are two twist fields, H*(z) ,  corresponding to the two fixed points of the map 
(3.1), one at zero and the other at TR. Correlation functions of twist fields are invariant 
under any of the following three transformations: H +  + - H', H- + - H-, H't, H-. 
A twist field at z = 0 and another one at z = oc generate a cut in the complex plane. 
4 ( z )  transported aFound a closed contour encircling z = 0, picks up a minus sign. In 
the presence of twist fields 4 ( z )  has a different two-point function [ 9 ] :  

t A similar idea has been also advocated by D Friedan. 
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The operator a,&(z) is double valued in the presence of spin fields, information 
which is encoded in the OPE: 

a ,$ l ( : )H*(w)= T T ( w ) / ( z - w ~ ) l  (3.3) 

where T * ( w )  are excited twist fields with dimension differing by $ from that of H ' ( z ) .  
To find explicitly the dimension of H * ( : )  we have to calculate F ( : )  =T(O(T(:)IO)T. 
Using the explicit form of T ( z )  and (3.2) we obtain G ( z )  = &z-? .  Then: 

1 
j- = - i l : d z F ( z ) = k .  27ri (3.4) 

It will be useful to be able to calculate correlation functions of vertex operators in 
the presence of twist fields. After some straightforward algebra, one obtains 

(3.5) 

Using (3.5) one can ascertain that from the primary operators in the N S  sector, 
only g,( : )  and G ( z )  have vanishing three-point functions with two twist fields. The 
three-point function of three twist fields is automatically zero due to 'twist conservation'. 

Thus we have the following OPE?: 

(3.6) 

where the coefficients can be found by computing the respective three-point functions. 
It is now clear why we decided in the beginning to choose a particular linear combination 
as a candidate for G ( z ) .  It had to give the correct OPE (3.6) according to the known 
'fusion rules' [8]. 

J3 [&IO[&] = [0]0  i -[I + 3 0 2 - l  '[dl0 [ 3 0 2 '  '[d+i] 
8 

The superpartner of H ' ( z )  is given by 

(3.7) 

[6] imply that 
the operators T*(:) and f i * ( z )  are identical, something that can be deduced also 
directly by computing ( ~ + f i - )  and finding a non-zero result. 

Let us now investigate the operator product [l]O[&]. Due to twist conservation, 
the only families that are allowed to appear are [A] and [A+;]. 

Since the expectation value of g , ( : )  in the presence of two twist fields is zero, [h] 
is not present in the operator product. To investigate the appearance of [A+$] we 
must find (OiH'(cc)ia,$lfi'(O))O). To evaluate this three-point function, we first 
compute 

= 1 + 1  G ( : ) H * ( w ) = f i  = ( w )/ ( z - w, ) * 16 2 '  

In  fact, the form of the null vecton of the N = 2 T algebra at level 

(3.8) 

Now, if we let w + 0, using (3.8) we can find ( O ( H * ( c c ) i e , ~ ( z ) ~ + ( O ) ~ O )  as the residue 
of the l / w  pole. This gives 

(3.9) 

+ We should remind the reader that the phases of the operator product coefficients are arbitrary. They are  
irrelevant in a theory with scalar operators.  
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Consequently [1]@[&] =ia&[&+$]. The only remaining OPE to compute in the NS 

sector is [ i ] O [ & ] .  Again, conservation of twist implies that only the families [&I and 
[&+;I can appear in the operator product. Doing an  analogous computation as above 
we find 

[;I 0 [&I = 2- 1 / 3  [%I 1 0 i 2 - 1 ; 3  2& [%++I  I (3.10) 

in accord with [8]. The picture of the NS sector is now complete. 

dimension & and A .  Let us consider 
Moving back again to the R sector, we have to identify the remaining operators of 

(3.1 1) 

We can compute this correlation function by making a Mobius transformation, pushing 
z + 0, w + m and thus reducing it to a correlation of vertex operators in the twisted 
vacuum 

&+& 
(RIH' (z )H+(  w ) l R )  = 2-1'6[ ZW(  z - w)]"'" (3.12) 

Letting w + 0 we obtain 

lim(RIH'(z)H'(w)lR)=2-1'6w-1 24[1 +:(z/w)' 2+O(w)]  (3.13) 
* - 0  

which shows that the lowest dimension operator in the OPE [&INSO[$i] has A = &  
whereas the next lowest one has A = 6. The operator with dimension $5 is in fact the 
primary operator generating [ A I R .  We claim that the operator above with dimension 
& is also a primary operator generating [&]R.  To verify our claim we have to calculate 
the expectation value of T ( z )  in the presence of this operator. If this state is primary 
the singular terms can be at most O ( Z - ~ ) .  We find for this correlation function: 

(3.14) 

which shows explicitly that [&]R is primaryt. 

operators of the ĉ  = 3N = 1 superconformal system is now complete. 

two examples of four-point functions. We use superfields, GA( z )  = ga( z )  + 

Thus [&INs@[$i] = [&]R@2-7'1Z&[&]R and  the construction of the primary 

Correlation functions of the operators above can be easily computed. We give here 
z), 

(ol@);:,(Zl)~'/b(z2)~);/6(z3)@1/6(ZJ)IO)= (z14zZ3)1'3(u+ 1)'13[1 + y / 3 ( u +  I ) ]  ( 3 . 1 5 ~ )  

) (3.15b) 
3 u ( u + 1 ) + 1  -- y 3 u + 2  

3 u ( u + l )  3 u ( u + l ) 2  @I@ T,6( Z I  )@ ;, 6 (  z 2 )  @ 1 ( z j  )@ 1 ( 2 4 )  10) = z ;; z ;4' 

t This does not guarantee that [SIR is not the superpartner of [ + I R ,  but another computation shows that 
the two operators are in fact orthogonal. 
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where U, y are OSP (211) invariants given by 

(3.16) 

So far we have been discussing the left sector, The full theory is the tensor product 
of the left and right sectors. There is no unique way of taking the tensor product 
though. However, there is a physical principle that restricts the possible ways of sewing 
together the left and right sectors, and this is modular invariance. If one defines the 
system on a plane rectangle with periodic boundary conditions ( a  topological torus), 
then modular invariance is equivalent to the invariance of the system under global 
reparametrisations of the torus. Modular invariance puts severe constraints on the 
operator content of conformal field theories [IO]. A similar analysis carries through 
for the N = 1 superconformal models [ 111. In  our  case, there are two modular invariamt 
combinations. Let us denote the operators by ( A ,  i), where A, ( A )  are their dimensions 
under the left (right) Virasoro algebra. The physical dimension of the operator is 
x = A +  2 and its spin, S = A -A. The first solution contains only scalar operators with 
A = &  and A takes all the possible values of table 1. In fact, this describes two diflerent 
theories, since there is a sign ambiguity in the partition function of the R operators 
with antiperiodic boundary conditions in time. The second solution contains the 
following operators: in the NS sector, [0, 01, [ i ,  i] ,  and [ l ,  11, all of spin zero and [ l ,  01, 
[0,1] of spin *l; in the R sector, [&,A] and [$,:I, both being scalar. The second 
theory is N = 2  superconformal invariant and contains both the NS and  R sector but 
not the T sector. 

4. Conclusions and remarks 

As mentioned previously, the model describes a specific critical point in the O( 2) 
Gaussian model or the X Y  model. The X Y  model below the Kosterlitz-Thouless 
critical temperature T, flows to the Gaussian critical line with c = 1. Where one ends 
up  on this line depends on the specific value of p = J /  kT that one starts from. Since 
different radii just rescale p, a fixed radius corresponds to a fixed point on the critical 
line. There is a whole series of conjectured or  proven critical exponents for the O ( n )  
models [7,  12, 131. From them we can extrapolate to n = 2 in which case we recover 
the exponents at the Kosterlitz-Thouless point. In particular, the thermal exponents 
xT,, = n2/2 for n even correspond to the [ l ,  11 family whereas the exponents xH, ,  = 
(2n - 1)*/8 for n = 0 ,  1 mod(4) correspond to the [A, ,+I family, while for n = 
2 ,3  mOd(4) they correspond to the [A,  &] family. 

The Gaussian model describes also the AT model along the p = 1, -1 c A s 1 critical 
line?. The AT model is described by two k ing  spins coupled with a four-spin interaction. 
There are two couplings, p governing the strength of the four-spin interaction and A 
governing the spin-spin interactions. At p = 1 the strength of the four-spin interaction 
vanishes and there is a line of critical points, -1 s A 1, of infinite order (what is 
known as of the Kosterlitz-Thouless type). The critical exponents are varying con- 
tinuously on the line. The point A = O  corresponds to two decoupled k ing  models 
(Z20Z2 symmetry), whereas at A = *l the model has a 2, symmetry corresponding 
to the critical Potts model (ferromagnetic or antiferromagnetic). 

t For more details on the model and  its phase diagram we refer the reader to [ 141. We will follow the 
notation of the previous reference. 
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As mentioned above, the AT model on the critical line is described by a free boson. 
The action in the continuum limit on the line p = 1 is 

S = - K ( h )  d T d a 4 V 2 4  (4.1) I 
where K = (2/7r)(l -cos- ’ (A) /a ) .  Going to complex coordinates, ln (z)  = T+iv, it is 
easy to see that the theory has a factorised z, Z dependence. The two-point function is 

whereas the energy-momentum tensor is given by T ( z )  = - ( K / 2 x )  : d Z ~ ( z ) a , 4 ( z )  :, 
satisfying ( 2 . 2 ) .  The dimension of the vertex operator exp( i a4 )  is given by Aa = a2/8rrK. 
From that it is obvious that the radius of the boson is given by R = (6xK)”’ .  

The point A = --id is the Kosterlitz-Thouless point and as we mentioned earlier 
the system is described by the c* = $, N = 1 superconformal system (realising also N = 2 
superconformal invariance [3,4]). This is supported by the existence in the spectrum 
of the thermal critical exponent xT = 2 ,  the magnetic exponent xH = 4, the second 
magnetic exponent xh = and a parafermionic operator found in [ 151, with spin 4 and 
dimension i constant on the whole critical line corresponding to the family [A, A]. If 
we use the previously mentioned relation between R and K we find R = which is 
what we used in the beginning. By redefining the scalar field and the corresponding 
vertex operators in the previous sections we can easily map the previous construction 
to the A = -+a model. 

The critical system above is of phenomenological importance since it seems to 
describe the superfluid-to-normal transition of helium films [ 161 and possibly critical 
behaviour in planar magnetics [ 171 and liquid crystals [ 181. 

To conclude, we constructed the full operator content of the c  ̂ = 3 minimal N = 1 
superconformal model using the operators of the Gaussian model at a specific point 
on the critical line. We verified explicitly the corresponding OPE and evaluated some 
correlation functions. This proves the existence of N = 1 superconformal symmetry 
in the Gaussian model at a fixed radius. 

We should stress once more the importance of the conformal approach to critical 
systems, which will eventually (and hopefully) unify the description of the different 
universality classes of critical behaviour in two dimensions. 
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